RERS 2020:
Learning, Testing, Fuzzing and Slicing

Joshua Moerman Jana Berger
RWTH Aachen University RWTH Aachen University
joshua@cs.rwth-aachen.de berger@cs.rwth-aachen.de

October 16, 2020

1 Qwverview

The RERS challenge consists of analysis problems for reactive software. We
participate in the following two tracks.

Sequential LTL problems These consist of source code (in both C and Java)
and we have to evaluate whether certain LTL properties hold for the
program.

Sequential reachability problems These consist of source code (again both
C and Java) and we have to decide which error codes are reachable.

Our main technique is that of active automata learning. For the LTL prob-
lems, we hope that the learning finds the right model, in which case we can
model-check the LTL properties, since this logic is decidable for finite state
systems. For the reachability problems, we can only find reachable errors
through learning. For non-reachability, we have to rely on the fact that the
learned models are complete. We have observed that our models were not
complete, and so we used another technique: program slicing. This was able
to prove some non-reachability results. For both tracks we did additional
testing and fuzzing.

1.1 Tools

Here we give a list of used tools with a short description.

LearnLib [IHS15]] (All problems)
This is a Java library for automata learning and testing. We have used
this to learn all the provided problems.

NuSMV [[CCGR99] (LTL problems)
This is an explicit state model checker, which we use after the models
have been learned.

hybrid-ads [Moel9] (LTL problems)
We did additional testing with our own tool, which is based on distin-
guishing sequences.

afl-fuzz [Zal] (Reachability problems)
We used fuzzing to do additional testing of the reachability problems.
This is closely related to random testing, but it also instruments the
code, in order to discover different execution paths.

FramaC [[CKK"12] (Reachability problems)
This is a library for many types of analysis for C code. We used slicing
to prove that certain errors are unreachable.

All commands, used parameters, and results can be found in our reposi-
tory: git.rwth-aachen.de/joshua/rers2020
1.2 Timeline

Since learning, testing, and fuzzing may run indefinitely, we have set fixed
time outs. We did the following. The actual running times can be found in
the subsequent sections.

e 24 hours of learning, with max 2 000 000 tests (per hypothesis).
e 90 hours of learning for known incomplete problems (12, 15, 16).
e 112 hours of additional fuzzing.

e 112 hours of additional testing.

After that, we did the model checking for the LTL problems. And we
extracted the reachable errors for the reachability problems. Additionally
we did slicing for the reachability problems. All these later steps did not
take a considerable amount of time.

Remark 1. For slicing, we had time issues for the biggest problem (Problem
19). It needed roughly a full day per error code to slice the problem. For this
reason, we did not slice Problem 19.

https://git.rwth-aachen.de/joshua/rers2020

Problem States Time EQs Remark

1 35 5s 15
2 55 8s 30
3 107 5m 44s 70
4 88 31s 59
5 151 23s 72
6 96 1m 4s 51
7 107 10m 29s 60
8 42 1m 59s 23
9 77 20m 19s 35
11 20 1s 7
12 9724 90h Om Os 3770 Timeout
13 77 40s 41
14 162 27s 77
15 11238 90h Om Os 6152 Timeout
16 13 895 90h Om Os 7914 Timeout
17 714 3m Os 372
18 658 2m 53s 339
19 884 32m 23s 485

Table 1: Runtime to the final hypothesis and number of equivalence queries. Note
this time does not include testing after the last hypothesis. Some of the reachability
problems timed out.

2 Learning

In this section we report more details on the learning. We have used the TTT
algorithm [[HS14] for learning and the randomised Wp method [[FvBK91,
Moel9]] for testing the hypotheses. Otherwise, the LearnLib code was
straightforward. The number of tests was bound by 2 million per hypothesis.

The running times for learning can be found in Table[l} Note that some
problems ran until the timeout, meaning that these models are known to
be incomplete. (For the other models, we do not know whether they are
complete.) Unfortunately, we did not count the number of membership
queries.

Remark 2. We observe that the problems 17 and 18 are quite big, but are
learned very fast. This is in contrast to, for example, problem 9. We conjecture
that the running time is mostly determined by the time to find counterexam-
ples (based on luck) and that the learning algorithm is efficient.

3 esting and Fuzzing

After the learning process we did additional testing. For the LTL problems,
we did this with our FSM-based conformance checking hybrid-ads [Moel9]].

Problem Common findings Unique to learning Unique to fuzzing

11 18

12 16

13 23 8
14 15

15 41

16 14 1
17 30

18 29 1

19 13 1

Table 2: Number of reachable errors found by the different techniques.

This tool randomly generates tests according to the HSI-method (using
adaptive distinguishing sequences when possible). We tested for 112 hours,
slowly increasing the length of the length of the tests. No counterexamples were
found. To give an idea of the number of tests, for problem 1: We performed
roughly 67 million tests, of an average length of 1030 actions. Meaning that
we roughly performed 69 billion tests, which, admittedly, is a bit overkill.

For the reachability problems, we used fuzzing instead. The reason for
this is that we expected counterexamples to be found (because problems
12,15, and 16 timed out). We wanted to only look for reachable errors, not
just any counterexample, and fuzzing finds traces for which the program
crashes. We did provide the fuzzer an initial state cover, so that it is already
able to find the known errors quickly. The fuzzer found additional error
codes, which we summarise in Table[2 Note that for the known incomplete
models it only found 1 additional error. But it also found many more errors
for problem 13.

Remark 3. The fuzzing did find additional errors to be reachable. However,
it also didn’t find all the errors found through learning. This is surprising,
as we provided the fuzzer a state cover of the learned models. The fuzzer
outputted that there were too many initial traces, and that it removed redun-
dant ones. This means that, although our state cover reaches different states,
these are seen as equivalent by the fuzzer.

4 LTL Model Checking

Since the learning algorithm constructs finite state machines, we can directly
apply LTL model checking. We used the NuSMYV tool, for no particular rea-
son. The above mentioned repository contains code for converting LearnLib
models into NuSMV models, by using the alternating I/O semantics.

It is interesting to see how the valuation of the LTL properties change over
time. We have computed all the properties on the intermediate hypotheses

s

VKK XX KEKXKXEEXKK

XK K XX KK XX KK XXEEKXXKEKKXKKK XK

VKK XX KEKXKEEXKKEKXKEEKK KKK KX

XK K XX KK XX KKXKXXEKXXEKKX

x

CKKXXKEXXKEEXKXEEKXKEEKX KKK KX

B4 s s KXXEEXXEERX

X KK XX XK XXXKXXXKEXXKXKXXXKXXXXKXXXEXXXEXXXXEXXKEXXXKXXXXEXXXEXXXEEXXEKXX

KK XX KKK XXKKXXKKXXEKXXKKKXKXKEKKKXXKKXXKKXXXKXXXKXXXKKXXXEXXXEEXKEEKK XK

pr—

V44 XX KKK XKEKKXKKKXXKKKXKEKXKXEKXXKEEXXKEXXKEXXXKKXXKKXXXKKXXKKXXXEXXXEKXX
V44 XX KK XX KEKKXKKKXXKKKXKEKKXKXEKKXXKEXXKEXXXEXXXKKXXKXXXXXKXXXEXXXEXXXEKXKX

S X KK XX XKKXXKKXXKEKXXXEKKXXEKXXKEXXKEXXXKEXXXKXXXKXXXXEXXXKE <

S KKK XKKKXXKKKXXEKKXKEKXXEKXXKEXXXEKXXEKXXXEKKXKEKKXXKKXXKKXX KKK KKK XX

0K KX XKKKXXKKXXKKKXKKKXXKKXXXEXXXEKXXKEEXXKEXXXEXXXKXKXXKKXXKEXXXEXXXEEXX

2B % %Y MR 040w e e 20 NS 8

b2 nmnusmTA® N

2on sy

LUK XX KK XX KEXXKEXXXEKXXKKKXKX KKK XK KKK KK XXX KK XX KKK X

VUK XX EKKKKKKKKKKKXKEKKKKEKKXEKXXKEXXKEXXXEKXKKEXKX KKK XK

X KK XX KK XX XEKKXXKKXXKKKXXKKXXXEXXXEXXXEXXXKEXXKEXXX KKK K

WK KK X KK KKKKKKKKKKKXEKKKEKKK KKK KK

KK XX KKXXEKXXKEEXXXEXXXEKXXKEXXXEKXXKEKXXXKXXXEKXXEEXXKEXXXEXXXEEXXXEKXXEKX

KK XX KKXXKEKXXKEXXXEEXXKKXXXEXXXKEXXKKXXXKKXXKKXXKEXXKEKEX KKK X KEXXXEEX X KKK

XK KX X KKK XKEKXXEKKXXKKXXKKXXKKXXXKXXXKEXXXEXXXEKXX KKK X KKK X KKK
W/ s XK KKXKXKEKKXXEKXXEEXXKEKXXEKXXKKKXXEKXXEKXXXEXXXEXXXKEEXXXEXXXEKXXKKEKKXXKKX

gt

R

R

2 au

Bou 2w u s ey W o

XK KX XK KX XK KKK X EKXXXKKXXKKX XX KX XX KK XX KK XX KKK KKK KK
KK XXX KXXXEXXXKEKXXEEXXXEXXXEEXXXEKXXEK XX KKK X KKK XK KKK

f

!

S K X X KK XXX EKKXXEKXXKEKXXEKXXXEXXXKEXXKEXXXKKXXKKXXKEKX

CX KKK XX KKK XKKKXXKK KX KK KX KKK XK KKK XK XX XK KX X KKK

XK XXX EEKKXXEKXX KKK XX KKK X KKK X KKK XK EKX KKK XX KKK X KKK XX

S KKK KX KKKKXKEKKKXEKEKXXKEKXXEKXXKEXXKEXXXEKXXKEKKXEKKXXEKX

XK KX XKKXXKEKXXXKKXXKKKXXKKXXXKKXXKEXXKEXXXEXXXKKXXXEXXXEKXXEKX

LXK KX XKKXXKKXXXEKXXKEXXKXEKXXKEXXKEXXXEKXXKEXXKK

s s XXX
SR K KX KKK KXXKKKKXKKKXKEKXXEEXXXKEXXKKXXKEXXXEKXXKEXEKKXK

VKK XX KKKXKXKKXXKKKXKEKXXEEXXXEXXXKEXXKEXXKEXXXKEEXKKXK

.

XX KX X XK

X4 KX XKEKXXKEXXKKKXXKKXXXEXXXKKXXKEXX 4 4 4 X XEXXXKK <

LXK KX XKKEXXXKKXXKEXXKXKKXXKKXX KKK X KKK KX

KK XX KKXXKKKXXEKEXXKEXXXEXXXKEXXXXXXXXEKXXEXEXXKEXXEEXXXEEXX

x

s

LK E XX XEKEXXXKEXXKEKXKEK
K4 X X KK XXKEKXXKXEKXXXEKXXXKEXXKEXXXKEXXX

Jr——

VKX XKEKXXKEKXKKEEKXKK

K. X XXKKXXKEKXXKEEXXKEXXXEXXXEEXXXKEKXX

V44444 s KEKKXKEKKXKEEKXKEKXKEEXXEEKX

KRR X

VKK XX KEKXXKEKXKKEXXKK

V4 XX KK XXKEEXXKEEX KK

VUK XX KKK XXEKKXKEKKXXKEXXKEEKKXKKX
VKKK KEKEKKXEKKXEEXXEEKXKEKXKEEXX

1l the LTL properties on the intermediate hypotheses. The

ing a

Evaluat
problems are in order (first left-to-right, then top-to-bottom).

Figure 1

Problem Reachable ~ Unreachable ~ Unknown Avg. Time per Slice

11 18 64 18 2.15s
12 16 49 35 7.82s
13 31 22 47 9.93s
14 15 43 42 9.02s
15 41 16 43 248s
16 15 2 83 1488s
17 30 26 44 54.6s
18 30 18 52 1954s
19 14 0 86 >86400s

Table 3: Number of reachable errors (see previous section) and unreachable errors
as proven by program slicing. We have added a column which indicates for how
many error codes we do not have an answer.

as well. We observe that the valuation doesn’t change very often, and that
the “final” result is obtained before the final hypothesis. The first hypothesis
is always a single-state machine. See Figure [I|for these timelines.

We note that some properties don’t change at all, they probably are
tautologies, or have little to do with the actual program. Some properties
only change once, these could be safety properties, as they can be violated
with a single finite word. We do not know whether there is any connection
between the ease of learning and the complexity of the property.

5 Slicing

We select a specific error code to be sliced and modify the program to only
contain the error locations of this error code. FramaC then removes all the
code which it deems irrelevant for that particular error. We achieve this
by slicing for calls to __VERIFIER_error (). In some cases, no code was left
(i.e. just an empty main() function), meaning that those error codes are
unreachable. In Table 8| we report the number of unreachable error codes
proven this way.

Unfortunately, this approach is really separate from the learning, and we
see no way of using the slicing information for the learning, or vice versa.

References

[CCGR99] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and
Marco Roveri. NuSMV: A new symbolic model verifier. In CAV, volume
1633 of Lecture Notes in Computer Science, pages 495-499. Springer, 1999.

[CKK'12] Pascal Cuogq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto,
Julien Signoles, and Boris Yakobowski. Frama-c - A software analysis

[FvBK*+91]

[THS14]

[IHS15]

[Moel9]

[Zal]

perspective. In SEFM, volume 7504 of Lecture Notes in Computer Science,
pages 233-247. Springer, 2012.

Susumu Fujiwara, Gregor von Bochmann, Ferhat Khendek, Mokhtar
Amalou, and Abderrazak Ghedamsi. Test selection based on finite
state models. IEEE Trans. Software Eng., 17(6):591-603, 1991.

Malte Isberner, Falk Howar, and Bernhard Steffen. The TTT algorithm:
A redundancy-free approach to active automata learning. In RV, vol-
ume 8734 of Lecture Notes in Computer Science, pages 307-322. Springer,
2014.

Malte Isberner, Falk Howar, and Bernhard Steffen. The open-source
LearnLib - A framework for active automata learning. In CAV (1), vol-
ume 9206 of Lecture Notes in Computer Science, pages 487-495. Springer,
2015.

Joshua Moerman. Nominal Techniques and Black Box Testing for Automata
Learning. PhD thesis, Radboud University, Nijmegen, The Netherlands,
2019.

Michal Zalewski. American fuzzy lop. https://lcamtuf.coredump)
cx/afl/. Online; accessed 26-August-2020.

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

	Overview
	Tools
	Timeline

	Learning
	Testing and Fuzzing
	LTL Model Checking
	Slicing

