
Residuality and Learning
for Register Automata

Joshua Moerman

September 18, 2020

1 Introduction

Register automata (RA) are a generalisation of automata which deal with
data values and data flow. Typically, the values are taken from an infinite
domain, and so their languages are over an infinite alphabet. Despite that,
many algorithms do generalise, since RA allow only for a restricted use of
data values. Applications include reasoning about XML databases [NSV04],
trace languages for analysis of programs with resource allocation [GDPT13],
and behaviour of programs with data flows [HJV19].

In this research we consider the problem of inferring a register automaton
from observations. This has been done before for deterministic RA [Aar14,
Cas15, Fit18, MSS+17], but is still open for nondeterministic RA. To see why
nondeterminism is interesting, consider the well-known learning algorithms
L* and NL* for respectively deterministic and nondeterministic automata.
Although the representation is different, they operate on the same class
of languages (i.e., regular languages). This is not the case for RA, where
nondeterminism gives a strictly bigger class of languages than determinism.
So not only does the representation changes, so does the class of languages.

Deterministic

Residual−

Residual Nondeterministic−

Nondeterministic

Figure 1: Different classes
of data languages. With ·−
we denote classes where au-
tomata are not allowed to
guess.

Our contributions are as follows.1

- We consider residual automata for data
languages. We show that their languages
form a proper subclass of all languages
accepted by nondeterministic RA. See
Figure 1.

- We give a machine-independent character-
isation of this class of languages. For
this, we also develop some new results
in nominal lattice theory.

- We show that for this class of languages,
L*-style algorithms exist.

1This is joint work with Matteo Sammartino, see our paper [MS20].

1



- The natural generalisation of NL* does not always terminate, surpris-
ingly. Fortunately, the algorithm can be fixed to always terminate.

In particular, this settles some open problems left in [MSS+17]. We
like to note that residuality was introduced in [DLT02], as a tool to better
understand certain learning problems for probabilistic automata [DE08].

2 The Main Theorem

Our results are proven using nominal automata. The correspondence between
RA and nominal automata can be found in [Boj19, BKL14]. Let A be a
countably infinite set of atoms.
Definition 1. A nominal automaton is a tuple A = (Q, Σ, I, F, δ), where Q is
the state space, Σ the alphabet, I, F ⊆ Q respectively initial and final states,
and δ ⊆ Q× Σ×Q a transition relation. We require Q, Σ to be orbit-finite
and I, F, δ to be equivariant.
Definition 2. Given a language L ⊆ Σ∗ and a word w ∈ Σ∗, we define the
derivative as w-1L := {u | wu ∈ L}. The set of all derivatives of L is denoted
by Der(L) := {w-1L | w ∈ Σ∗}.

An automaton A is residual if all states accept a derivative of L(A).
Example 1. The language L := {uawav | u, w, v ∈ A∗, a ∈ A} can be
accepted by the automaton depicted below. The set Der(L) is not orbit-finite,
hence L is not accepted by a deterministic automaton. However, the set is
generated by (the orbits of) L, a-1L, aa-1L, that is, each derivative is a union
of these derivatives.

a

A

a

A

a

A

This language can be accepted by a residual automaton, precisely because
of these generators. This works more generally, as our main theorem shows.
Theorem 1. Given a language L ∈ P(Σ∗), the following are equivalent:

1. L is accepted by a residual automaton.

2. There is some orbit-finite set J ⊆ Der(L) which generates Der(L).

3. The set JI(Der(L)) is orbit-finite and generates Der(L). Here JI is the set
of join-irreducibles.

This characterisation is proven by constructing a canonical residual au-
tomaton from the join-irreducible elements. Importantly, it enables learning,
since it means that a canonical automaton can be constructed from an obser-
vation table. Moreover, it shows that a finite observation table always exist
for residual automata.

2



References
[Aar14] Fides Dorothea Aarts. Tomte: bridging the gap between active learning and

real-world systems. PhD thesis, 2014.

[BKL14] Mikołaj Bojańczyk, Bartek Klin, and Slawomir Lasota. Automata theory
in nominal sets. Logical Methods in Computer Science, 10(3), 2014.

[Boj19] Mikołaj Bojańczyk. Slightly Infinite Sets. Draft September 11, 2019, 2019.
https://www.mimuw.edu.pl/ bojan/paper/atom-book.

[Cas15] Sofia Cassel. Learning Component Behavior from Tests: Theory and Algo-
rithms for Automata with Data. PhD thesis, 2015.

[DE08] François Denis and Yann Esposito. On rational stochastic languages.
Fundam. Inform., 86(1-2):41–77, 2008.

[DLT02] François Denis, Aurélien Lemay, and Alain Terlutte. Residual finite state
automata. Fundam. Inform., 51(4):339–368, 2002.

[Fit18] Paul Fiterău-Bros, tean. Active Model Learning for the Analysis of Network
Protocols. PhD thesis, 2018.

[GDPT13] Radu Grigore, Dino Distefano, Rasmus Lerchedahl Petersen, and Nikos
Tzevelekos. Runtime verification based on register automata. In TACAS,
volume 7795 of LNCS, pages 260–276. Springer, 2013.

[HJV19] Falk Howar, Bengt Jonsson, and Frits W. Vaandrager. Combining black-
box and white-box techniques for learning register automata. In Comput-
ing and Software Science, volume 10000 of LNCS, pages 563–588. Springer,
2019.

[MS20] Joshua Moerman and Matteo Sammartino. Residual nominal automata.
In CONCUR, volume 171 of LIPIcs, pages 44:1–44:21. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

[MSS+17] Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin,
and Michał Szynwelski. Learning nominal automata. In POPL, pages
613–625. ACM, 2017.

[NSV04] Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state ma-
chines for strings over infinite alphabets. ACM Trans. Comput. Log.,
5(3):403–435, 2004.

3


