
Minimal Separating Sequences for All Pairs
of States

Rick Smetsers(B), Joshua Moerman, and David N. Jansen

Institute for Computing and Information Sciences, Radboud University,
Toernooiveld 212, 6525 EC Nijmegen, The Netherlands
{r.smetsers,joshua.moerman,dnjansen}@cs.ru.nl

Abstract. Finding minimal separating sequences for all pairs of inequiv-
alent states in a finite state machine is a classic problem in automata
theory. Sets of minimal separating sequences, for instance, play a central
role in many conformance testing methods. Moore has already outlined a
partition refinement algorithm that constructs such a set of sequences in
O(mn) time, where m is the number of transitions and n is the number
of states. In this paper, we present an improved algorithm based on the
minimization algorithm of Hopcroft that runs in O(m log n) time. The
efficiency of our algorithm is empirically verified and compared to the
traditional algorithm.

Keywords: Algorithms on automata and words · Partition refinement

1 Introduction

In diverse areas of computer science and engineering, systems can be modelled
by finite state machines (FSMs). One of the cornerstones of automata theory
is minimization of such machines (and many variation thereof). In this process
one obtains an equivalent minimal FSM, where states are different if and only if
they have different behaviour. The first to develop an algorithm for minimization
was Moore [9]. His algorithm has a time complexity of O(mn), where m is the
number of transitions, and n is the number of states of the FSM. Later, Hopcroft
improved this bound to O(m log n) [6].

Minimization algorithms can be used as a framework for deriving a set of
separating sequences that show why states are inequivalent. The separating
sequences in Moore’s framework are of minimal length [3]. Obtaining minimal
separating sequences in Hopcroft’s framework, however, is a non-trivial task.
In this paper, we present an algorithm for finding such minimal separating
sequences for all pairs of inequivalent states of a FSM in O(m log n) time.

Coincidentally, Bonchi and Pous recently introduced a new algorithm for
the equally fundamental problem of proving equivalence of states in non-
deterministic automata [1]. As both their and our work demonstrate, even classi-
cal problems in automata theory can still offer surprising research opportunities.

Supported by NWO project 628.001.009 on Learning Extended State Machines for
Malware Analysis (LEMMA).

c© Springer International Publishing Switzerland 2016
A.-H. Dediu et al. (Eds.): LATA 2016, LNCS 9618, pp. 181–193, 2016.
DOI: 10.1007/978-3-319-30000-9 14

182 R. Smetsers et al.

Moreover, new ideas for well-studied problems may lead to algorithmic improve-
ments that are of practical importance in a variety of applications.

One such application for our work is in conformance testing. Here, the goal is
to test if a black box implementation of a system is functioning as described by
a given FSM. It consists of applying sequences of inputs to the implementation,
and comparing the output of the system to the output prescribed by the FSM.
Minimal separating sequences are used in many test generation methods [2].
Therefore, our algorithm can be used to improve these methods.

2 Preliminaries

We define a FSM as a Mealy machine M = (I,O, S, δ, λ), where I,O and S are
finite sets of inputs, outputs and states respectively, δ : S × I → S is a transition
function and λ : S × I → O is an output function. The functions δ and λ are
naturally extended to δ : S ×I∗ → S and λ : S ×I∗ → O∗. Moreover, given a set
of states S′ ⊆ S and a sequence x ∈ I∗, we define δ(S′, x) = {δ(s, x)|s ∈ S′} and
λ(S′, x) = {λ(s, x)|s ∈ S′}. The inverse transition function δ−1 : S × I → P(S)
is defined as δ−1(s, a) = {t ∈ S|δ(t, a) = s}. Observe that Mealy machines are
deterministic and input-enabled (i.e. complete) by definition. The initial state is
not specified because it is of no importance in what follows. For the remainder of
this paper we fix a machine M = (I,O, S, δ, λ). We use n to denote its number of
states, i.e. n = |S|, and m to denote its number of transitions, i.e. m = |S| × |I|.
Definition 1. States s and t are equivalent if λ(s, x) = λ(t, x) for all x in I∗.

We are interested in the case where s and t are not equivalent, i.e. inequivalent.
If all pairs of distinct states of a machine M are inequivalent, then M is minimal.
An example of a minimal FSM is given in Fig. 1.

Definition 2. a separating sequence for states s and t in s is a sequence x ∈ i∗

such that λ(s, x) �= λ(t, x). We say x is minimal if |y| ≥ |x| for all separating
sequences y for s and t.

A separating sequence always exists if two states are inequivalent, and there
might be multiple minimal separating sequences. Our goal is to obtain minimal
separating sequences for all pairs of inequivalent states of M .

2.1 Partition Refinement

In this section we will discuss the basics of minimization. Both Moore’s algo-
rithm and Hopcroft’s algorithm work by means of partition refinement. A similar
treatment (for DFAs) is given in [4].

A partition P of S is a set of pairwise disjoint non-empty subsets of S whose
union is exactly S. Elements in P are called blocks. If P and P ′ are partitions
of S, then P ′ is a refinement of P if every block of P ′ is contained in a block of
P . A partition refinement algorithm constructs the finest partition under some
constraint. In our context the constraint is that equivalent states belong to the
same block.

Minimal Separating Sequences for All Pairs of States 183

Definition 3. A partition is valid if equivalent states are in the same block.

Partition refinement algorithms for FSMs start with the trivial partition P =
{S}, and iteratively refine P until it is the finest valid partition (where all states
in a block are equivalent). The blocks of such a complete partition form the states
of the minimized FSM, whose transition and output functions are well-defined
because states in the same block are equivalent.

Let B be a block and a be an input. There are two possible reasons to split
B (and hence refine the partition). First, we can split B with respect to output
after a if the set λ(B, a) contains more than one output. Second, we can split B
with respect to the state after a if there is no single block B′ containing the set
δ(B, a). In both cases it is obvious what the new blocks are: in the first case each
output in λ(B, a) defines a new block, in the second case each block containing a
state in δ(B, a) defines a new block. Both types of refinement preserve validity.

Partition refinement algorithms for FSMs first perform splits w.r.t. output,
until there are no such splits to be performed. This is precisely the case when
the partition is acceptable.

Definition 4. A partition is acceptable if for all pairs s, t of states contained
in the same block and for all inputs a in I, λ(s, a) = λ(t, a).

Any refinement of an acceptable partition is again acceptable. The algorithm
continues performing splits w.r.t. state, until no such splits can be performed.
This is exactly the case when the partition is stable.

Definition 5. A partition is stable if it is acceptable and for any input a in I
and states s and t that are in the same block, states δ(s, a) and δ(t, a) are also
in the same block.

Since an FSM has only finitely many states, partition refinement will terminate.
The output is the finest valid partition which is acceptable and stable. For a
more formal treatment on partition refinement we refer to [4].

2.2 Splitting Trees and Refinable Partitions

Both types of splits described above can be used to construct a separating
sequence for the states that are split. In a split w.r.t. the output after a, this
sequence is simply a. In a split w.r.t. the state after a, the sequence starts with
an a and continues with the separating sequence for states in δ(B, a). In order to
systematically keep track of this information, we maintain a splitting tree. The
splitting tree was introduced by Lee and Yannakakis [8] as a data structure for
maintaining the operational history of a partition refinement algorithm.

Definition 6. A splitting tree for M is a rooted tree T with a finite set of nodes
with the following properties:

– Each node u in T is labelled by a subset of S, denoted l(u).
– The root is labelled by S.

184 R. Smetsers et al.

– For each inner node u, l(u) is partitioned by the labels of its children.
– Each inner node u is associated with a sequence σ(u) that separates states

contained in different children of u.

We use C(u) to denote the set of children of a node u. The lowest common
ancestor (lca) for a set S′ ⊆ S is the node u such that S′ ⊆ l(u) and S′ �⊆ l(v)
for all v ∈ C(u) and is denoted by lca(S′). For a pair of states s and t we use
the shorthand lca(s, t) for lca({s, t}).

The labels l(u) can be stored as a refinable partition data structure [11]. This
is an array containing a permutation of the states, ordered so that states in the
same block are adjacent. The label l(u) of a node then can be indicated by a
slice of this array. If node u is split, some states in the slice l(u) may be moved
to create the labels of its children, but this will not change the set l(u).

A splitting tree T can be used to record the history of a partition refinement
algorithm because at any time the leaves of T define a partition on S, denoted
P (T). We say a splitting tree T is valid (resp. acceptable, stable, complete) if
P (T) is as such. A leaf can be expanded in one of two ways, corresponding to
the two ways a block can be split. Given a leaf u and its block B = l(u) we
define the following two splits:

split-output. Suppose there is an input a such that B can be split w.r.t output
after a. Then we set σ(u) = a, and we create a node for each subset of B that
produces the same output x on a. These nodes are set to be children of u.

split-state. Suppose there is an input a such that B can be split w.r.t. the
state after a. Then instead of splitting B as described before, we proceed as
follows. First, we locate the node v = lca(δ(B, a)). Since v cannot be a leaf,
it has at least two children whose labels contain elements of δ(B, a). We can
use this information to expand the tree as follows. For each node w in C(v)
we create a child of u labelled {s ∈ B|δ(s, a) ∈ l(w)} if the label contains at
least one state. Finally, we set σ(u) = aσ(v).

A straight-forward adaptation of partition refinement for constructing a stable
splitting tree for M is shown in Algorithm 1. The termination and the correctness
of the algorithm outlined in Sect. 2.1 are preserved. It follows directly that states
are equivalent if and only if they are in the same label of a leaf node.

Example 7. Figure 1 shows a FSM and a complete splitting tree for it. This
tree is constructed by Algorithm 1 as follows. First, the root node is labelled by
{s0, . . . , s5}. The even and uneven states produce different outputs after a, hence
the root node is split. Then we note that s4 produces a different output after
b than s0 and s2, so {s0, s2, s4} is split as well. At this point T is acceptable:
no more leaves can be split w.r.t. output. Now, the states δ({s1, s3, s5}, a) are
contained in different leaves of T . Therefore, {s1, s3, s5} is split into {s1, s5} and
{s3} and associated with sequence ab. At this point, δ({s0, s2}, a) contains states
that are in both children of {s1, s3, s5}, so {s0, s2} is split and the associated
sequence is aab. We continue until T is complete.

Minimal Separating Sequences for All Pairs of States 185

Input: A FSM M
Result: A valid and stable splitting tree T
initialize T to be a tree with a single node labeled S
repeat

find a ∈ I, B ∈ P (T) such that we can split B w.r.t. output λ(·, a)
expand the u ∈ T with l(u) = B as described in (split-output)

until P (T) is acceptable
repeat

find a ∈ I, B ∈ P (T) such that we can split B w.r.t. state δ(·, a)
expand the u ∈ T with l(u) = B as described in (split-state)

until P (T) is stable
Algorithm 1. Constructing a stable splitting tree

s0

s1 s2

s3

s4s5

b/0
a/0

a/1

b/0
b/0
a/0

b/0
a/1

a/0

b/1

b/0
a/1

(a) (b)

Fig. 1. A FSM (a) and a complete splitting tree for it (b)

3 Minimal Separating Sequences

In Sect. 2.2 we have described an algorithm for constructing a complete splitting
tree. This algorithm is non-deterministic, as there is no prescribed order on the
splits. In this section we order them to obtain minimal separating sequences.

Let u be a non-root inner node in a splitting tree, then the sequence σ(u)
can also be used to split the parent of u. This allows us to construct splitting
trees where children will never have shorter sequences than their parents, as
we can always split with those sequences first. Trees obtained in this way are
guaranteed to be layered, which means that for all nodes u and all u′ ∈ C(u),
|σ(u)| ≤ |σ(u′)|. Each layer consists of nodes for which the associated separating
sequences have the same length.

Our approach for constructing minimal sequences is to ensure that each layer
is as large as possible before continuing to the next one. This idea is expressed
formally by the following definitions.

Definition 8. A splitting tree T is k-stable if for all states s and t in the same
leaf we have λ(s, x) = λ(t, x) for all x ∈ I≤k.

Definition 9. A splitting tree T is minimal if for all states s and t in different
leaves λ(s, x) �= λ(t, x) implies |x| ≥ |σ(lca(s, t))| for all x ∈ I∗.

186 R. Smetsers et al.

Minimality of a splitting tree can be used to obtain minimal separating sequences
for pairs of states. If the tree is in addition stable, we obtain minimal separating
sequences for all inequivalent pairs of states. Note that if a minimal splitting tree
is (n−1)-stable (n is the number of states of M), then it is stable (Definition 5).
This follows from the well-known fact that n−1 is an upper bound for the length
of a minimal separating sequence [9].

Algorithm 2 ensures a stable and minimal splitting tree. The first repeat-
loop is the same as before (in Algorithm 1). Clearly, we obtain a 1-stable and
minimal splitting tree here. It remains to show that we can extend this to a
stable and minimal splitting tree. Algorithm3 will perform precisely one such
step towards stability, while maintaining minimality. Termination follows from
the same reason as for Algorithm 1. Correctness for this algorithm is shown by
the following key lemma. We will denote the input tree by T and the tree after
performing Algorithm 3 by T ′. Observe that T is an initial segment of T ′.

Lemma 10. Algorithm3 ensures a (k + 1)-stable minimal splitting tree.

Proof. Let us proof stability. Let s and t be in the same leaf of T ′ and let x ∈ I∗

be such that λ(s, x) �= λ(t, x). We show that |x| > k + 1.
Suppose for the sake of contradiction that |x| ≤ k + 1. Let u be the leaf

containing s and t and write x = ax′. We see that δ(s, a) and δ(t, a) are separated
by k-stability of T . So the node v = lca(δ(l(u), a)) has children and an associated
sequence σ(v). There are two cases:

– |σ(v)| < k, then aσ(v) separates s and t and is of length ≤ k. This case
contradicts the k-stability of T .

– |σ(v)| = k, then the loop in Algorithm3 will consider this case and split.
Note that this may not split s and t (it may occur that aσ(v) splits different
elements in l(u)). We can repeat the above argument inductively for the newly
created leaf containing s and t. By finiteness of l(u), the induction will stop
and, in the end, s and t are split.

Both cases end in contradiction, so we conclude that |x| > k + 1.
Let us now prove minimality. It suffices to consider only newly split states in

T ′. Let s and t be two states with |σ(lca(s, t))| = k+1. Let x ∈ I∗ be a sequence
such that λ(s, x) �= λ(t, x). We need to show that |x| ≥ k + 1. Since x �= ε we
can write x = ax′ and consider the states s′ = δ(s, a) and t′ = δ(t, a) which are
separated by x′. Two things can happen:

– The states s′ and t′ are in the same leaf in T . Then by k-stability of T we get
λ(s′, y) = λ(t′, y) for all y ∈ I≤k. So |x′| > k.

– The states s′ and t′ are in different leaves in T and let u = lca(s′, t′). Then
aσ(u) separates s and t. Since s and t are in the same leaf in T we get
|aσ(u)| ≥ k + 1 by k-stability. This means that |σ(u)| ≥ k and by minimality
of T we get |x′| ≥ k.

In both cases we have shown that |x| ≥ k + 1 as required. �	

Minimal Separating Sequences for All Pairs of States 187

Input: A FSM M with n states
Result: A stable, minimal splitting tree T
initialize T to be a tree with a single node labeled S
repeat

find a ∈ I, B ∈ P (T) such that we can split B w.r.t. output λ(·, a)
expand the u ∈ T with l(u) = B as described in (split-output)

until P (T) is acceptable
for k = 1 to n − 1 do

perform Algorithm 3 or Algorithm 4 on T for k

Algorithm 2. Constructing a stable and minimal splitting tree

Input: a k-stable and minimal splitting tree T
Result: T is a (k + 1)-stable, minimal splitting tree
forall the leaves u ∈ T and all inputs a do

locate v = lca(δ(l(u), a))
if v is an inner node and |σ(v)| = k then

expand u as described in (split-state) (which generates new leaves)

Algorithm 3. A step towards the stability of a splitting tree

Example 11. Figure 2a shows a stable and minimal splitting tree T for the
machine in Fig. 1a. This tree is constructed by Algorithm 2 as follows. It exe-
cutes the same as Algorithm 1 until we consider the node labeled {s0, s2}. At
this point k = 1. We observe that the sequence of lca(δ({s0, s2}, a)) has length
2, which is too long, so we continue with the next input. We find that we can
indeed split w.r.t. the state after b, so the associated sequence is ba. Continuing,
we obtain the same partition as before, but with smaller witnesses.

The internal data structure (a refinable partition) is shown in Fig. 2b: the
array with the permutation of the states is at the bottom, and every block
includes an indication of the slice containing its label and a pointer to its parent
(as our final algorithm needs to find the parent block, but never the child blocks).

4 Optimizing the Algorithm

In this section, we present an improvement on Algorithm3 that uses two ideas
described by Hopcroft in his seminal paper on minimizing finite automata [6]:
using the inverse transition set, and processing the smaller half. The algorithm
that we present is a drop-in replacement, so that Algorithm2 stays the same
except for some bookkeeping. This way, we can establish correctness of the new
algorithms more easily. The variant presented in this section reduces the amount
of redundant computations that were made in Algorithm3.

Using Hopcroft’s first idea, we turn our algorithm upside down: instead of
searching for the lca for each leaf, we search for the leaves u for which l(u) ⊆
δ−1(l(v), a), for each potential lca v and input a. To keep the order of splits as
before, we define k-candidates.

188 R. Smetsers et al.

(a)

B2

B4 B8

B6 B3 B10 B7

B0 B5 B1 B9

s2 s0 s4 s5 s1 s3

(b)

Fig. 2. A complete and minimal splitting tree for the FSM in Fig. 1a (a) and its internal
refinable partition data structure (b)

Definition 12. A k-candidate is a node v with |σ(v)| = k.

A k-candidate v and an input a can be used to split a leaf u if v = lca(δ(l(u), a)),
because in this case there are at least two states s, t in l(u) such that δ(s, a) and
δ(t, a) are in labels of different nodes in C(v). Refining u this way is called
splitting u with respect to (v, a). The set C(u) is constructed according to (split-
state), where each child w ∈ C(v) defines a child uw of u with states

l(uw) = {s ∈ l(u) | δ(s, a) ∈ l(w)} (1)

= l(u) ∩ δ−1(l(w), a)

In order to perform the same splits in each layer as before, we maintain a list Lk

of k-candidates. We keep the list in order of the construction of nodes, because
when we split w.r.t. a child of a node u before we split w.r.t. u, the result
is not well-defined. Indeed, the order on Lk is the same as the order used by
Algorithm 2. So far, the improved algorithm still would have time complexity
O(mn).

To reduce the complexity we have to use Hopcroft’s second idea of processing
the smaller half. The key idea is that, when we fix a k-candidate v, all leaves are
split with respect to (v, a) simultaneously. Instead of iterating over of all leaves
to refine them, we iterate over s ∈ δ−1(l(w), a) for all w in C(v) and look up in
which leaf it is contained to move s out of it. From Lemma 8 in [7] it follows
that we can skip one of the children of v. This lowers the time complexity to
O(m log n). In order to move s out of its leaf, each leaf u is associated with a set
of temporary children C ′(u) that is initially empty, and will be finalized after
iterating over all s and w.

In Algorithm 4 we use the ideas described above. For each k-candidate v
and input a, we consider all children w of v, except for the largest one (in case
of multiple largest children, we skip one of these arbitrarily). For each state
s ∈ δ−1(l(w), a) we consider the leaf u containing it. If this leaf does not have
an associated temporary child for w we create such a child (line 9), if this child
exists we move s into that child (line 10).

Minimal Separating Sequences for All Pairs of States 189

Input: a k-stable and minimal splitting tree T , and a list Lk

Result: T is a (k + 1)-stable and minimal splitting tree, and a list Lk+1

1 Lk+1 ← ∅
2 forall the k-candidates v in Lk in order do
3 let w′ be a node in C(v) such that |l(w′)| ≥ |l(w)| for all nodes w in C(v)
4 forall the inputs a in I do
5 forall the nodes w in C(v) \ w′ do
6 forall the states s in δ−1(l(w), a) do
7 locate leaf u such that s ∈ l(u)
8 if C′(u) does not contain node uw then
9 add a new node uw to C′(u)

10 move s from l(u) to l(uw)

11 foreach leaf u with C′(u) �= ∅ do
12 if |l(u)| = 0 then
13 if |C′(u)| = 1 then
14 recover u by moving its elements back and clear C′(u)
15 continue with the next leaf

16 set p = u and C(u) = C′(u)

17 else
18 construct a new node p and set C(p) = C′(u) ∪ {u}
19 insert p in the tree in the place where u was

20 set σ(p) = aσ(v)
21 append p to Lk+1 and clear C′(u)

Algorithm 4. A better step towards the stability of a splitting tree

Once we have done the simultaneous splitting for the candidate v and input
a, we finalize the temporary children. This is done at lines 11–21. If there is
only one temporary child with all the states, no split has been made and we
recover this node (line 14). In the other case we make the temporary children
permanent.

The states remaining in u are those for which δ(s, a) is in the child of v that
we have skipped; therefore we will call it the implicit child. We should not touch
these states to keep the theoretical time bound. Therefore, we construct a new
parent node p that will “adopt” the children in C ′(u) together with u (line 16).

We will now explain why considering all but the largest children of a node
lowers the algorithm’s time complexity. Let T be a splitting tree in which we
color all children of each node blue, except for the largest one. Then:

Lemma 13. A state s is in at most (log2 n) − 1 labels of blue nodes.

Proof. Observe that every blue node u has a sibling u′ such that |l(u′)| ≥ |l(u)|.
So the parent p(u) has at least 2|l(u)| states in its label, and the largest blue
node has at most n/2 states.

Suppose a state s is contained in m blue nodes. When we walk up the tree
starting at the leaf containing s, we will visit these m blue nodes. With each

190 R. Smetsers et al.

visit we can double the lower bound of the number of states. Hence n/2 ≥ 2m

and m ≤ (log2 n) − 1. �	
Corollary 14. A state s is in at most log2 n sets δ−1(l(u), a), where u is a blue
node and a is an input in I.

If we now quantify over all transitions, we immediately get the following result.
We note that the number of blue nodes is at most n − 1, but since this fact is
not used, we leave this to the reader.

Corollary 15. Let B denote the set of blue nodes and define

X = {(b, a, s) | b ∈ B, a ∈ I, s ∈ δ−1(l(b), a)}.

Then X has at most m log2 n elements.

The important observation is that when using Algorithm4 we iterate in total
over every element in X at most once.

Theorem 16. Algorithm2 using Algorithm4 runs in O(m log n) time.

Proof. We prove that bookkeeping does not increase time complexity by dis-
cussing the implementation.

Inverse transition. δ−1 can be constructed as a preprocessing step in O(m).
State sorting. As described in Sect. 2.2, we maintain a refinable partition data

structure. Each time new pair of a k-candidate v and input a is considered,
leaves are split by performing a bucket sort.
First, buckets are created for each node in w ∈ C(v) \ w′ and each leaf u
that contains one or more elements from δ−1(l(w), a), where w′ is a largest
child of v. The buckets are filled by iterating over the states in δ−1(l(w), a)
for all w. Then, a pivot is set for each leaf u such that exactly the states that
have been placed in a bucket can be moved right of the pivot (and untouched
states in δ−1(l(w′), a) end up left of the pivot). For each leaf u, we iterate
over the states in its buckets and the corresponding indices right of its pivot,
and we swap the current state with the one that is at the current index. For
each bucket a new leaf node is created. The refinable partition is updated
such that the current state points to the most recently created leaf.
This way, we assure constant time lookup of the leaf for a state, and we can
update the array in constant time when we move elements out of a leaf.

Largest child. For finding the largest child, we maintain counts for the tempo-
rary children and a current biggest one. On finalizing the temporary children
we store (a reference to) the biggest child in the node, so that we can skip
this node later in the algorithm.

Storing sequences. The operation on line 20 is done in constant time by using
a linked list. �	

Minimal Separating Sequences for All Pairs of States 191

5 Application in Conformance Testing

A splitting tree can be used to extract relevant information for two classical test
generation methods: a characterization set for the W-method and a separating
family for the HSI-method. For an introduction and comparison of FSM-based
test generation methods we refer to [2].

Definition 17. A set W ⊂ I∗ is called a characterization set if for every pair
of inequivalent states s, t there is a sequence w ∈ W such that λ(s, w) �= λ(t, w).

Lemma 18. Let T be a complete splitting tree, then {σ(u)|u ∈ T} is a charac-
terization set.

Proof. Let W = {σ(u)|u ∈ T}. Let s, t ∈ S be inequivalent states, then by
completeness s and t are contained in different leaves of T . Hence u = lca(s, t)
exists and σ(u) separates s and t. Furthermore σ(u) ∈ W . This shows that W
is a characterisation set. �	
Lemma 19. A characterization set with minimal length sequences can be con-
structed in time O(m log n).

Proof. By Lemma 18 the sequences associated with the inner nodes of a splitting
tree form a characterization set. By Theorem 16, such a tree can be constructed
in time O(m log n). Traversing the tree to obtain the characterization set is linear
in the number of nodes (and hence linear in the number of states). �	
Definition 20. A collection of sets {Hs}s∈S is called a separating family if for
every pair of inequivalent states s, t there is a sequence h such that λ(s, h) �=
λ(t, h) and h is a prefix of some hs ∈ Hs and some ht ∈ Ht.

Lemma 21. Let T be a complete splitting tree, the sets {σ(u)|s ∈ l(u), u ∈
T}s∈S form a separating family.

Proof. Let Hs = {σ(u)|s ∈ l(u)}. Let s, t ∈ S be inequivalent states, then by
completeness s and t are contained in different leaves of T . Hence u = lca(s, t)
exists. Since both s and t are contained in l(u), the separating sequence σ(u) is
contained in both sets Hs and Ht. Therefore, it is a (trivial) prefix of some word
hs ∈ Hs and some ht ∈ Ht. Hence {Hs}s∈S is a separating family. �	
Lemma 22. A separating family with minimal length sequences can be con-
structed in time O(m log n + n2).

Proof. The separating family can be constructed from the splitting tree by col-
lecting all sequences of all parents of a state (by Lemma 21). Since we have to
do this for every state, this takes O(n2) time. �	
For test generation one moreover needs a transition cover. This can be con-
structed in linear time with a breadth first search. We conclude that we can con-
struct all necessary information for the W-method in time O(m log n) as opposed

192 R. Smetsers et al.

the O(mn) algorithm used in [2]. Furthermore, we conclude that we can con-
struct all the necessary information for the HSI-method in time O(m log n+n2),
improving on the reported bound O(mn3) in [5]. The original HSI-method was
formulated differently and might generate smaller sets. We conjecture that our
separating family has the same size if we furthermore remove redundant prefixes.
This can be done in O(n2) time using a trie data structure.

6 Experimental Results

We have implemented Algorithms 3 and 4 in Go, and we have compared their
running time on two sets of FSMs.1 The first set is from [10], where FSMs
for embedded control software were automatically constructed. These FSMs are
of increasing size, varying from 546 to 3 410 states, with 78 inputs and up to
151 outputs. The second set is inferred from [6], where two classes of finite
automata, A and B, are described that serve as a worst case for Algorithms 3
and 4 respectively. The FSMs that we have constructed for these automata have
1 input, 2 outputs, and 22 – 215 states. The running times in seconds on an Intel
Core i5-2500 are plotted in Fig. 3. We note that different slopes imply different
complexity classes, since both axes have a logarithmic scale.

500 1000 2000 3000

10−1

100

101

102

n

(a) Embedded control software

22 26 211 215
10−6

10−4

10−2

100

102

n

(b) Class A (dashed) and class B (solid)

Fig. 3. Running time in seconds of Algorithms 3 (gray) and 4 (black)

7 Conclusion

In this paper we have described an efficient algorithm for constructing a set of
minimal-length sequences that pairwise distinguish all states of a finite state
machine. By extending Hopcroft’s minimization algorithm, we are able to con-
struct such sequences in O(m log n) for a machine with m transitions and n
states. This improves on the traditional O(mn) method that is based on the

1 Available at https://gitlab.science.ru.nl/rick/partition/.

https://gitlab.science.ru.nl/rick/partition/

Minimal Separating Sequences for All Pairs of States 193

classic algorithm by Moore. As an upshot, the sequences obtained form a char-
acterization set and a separating family, which play a crucial in conformance
testing.

Two key observations were required for a correct adaptation of Hopcroft’s
algorithm. First, it is required to perform splits in order of the length of their
associated sequences. This guarantees minimality of the obtained separating
sequences. Second, it is required to consider nodes as a candidate before any
one of its children are considered as a candidate. This order follows naturally
from the construction of a splitting tree.

Experimental results show that our algorithm outperforms the classic app-
roach for both worst-case finite state machines and models of embedded control
software. Applications of minimal separating sequences such as the ones occur-
ring in [2,10] therefore show that our algorithm is useful in practice.

References

1. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congru-
ence. In: POPL, pp. 457–468 (2013)

2. Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli, A., Yevtushenko, N.: FSM-based
conformance testing methods: a survey annotated with experimental evaluation.
Inf. Softw. Technol. 52(12), 1286–1297 (2010)

3. Gill, A.: Introduction to the Theory of Finite-state Machines. McGraw-Hill,
New York (1962)

4. Gries, D.: Describing an algorithm by Hopcroft. Acta Informatica 2(2), 97–109
(1973)

5. Hierons, R.M., Türker, U.C.: Incomplete distinguishing sequences for finite state
machines. Comput. J. 58, 1–25 (2015)

6. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton.
In: Theory of Machines and Computations, pp. 189–196 (1971)

7. Knuutila, T.: Re-describing an algorithm by Hopcroft. Theoret. Comput. Sci.
250(1–2), 333–363 (2001)

8. Lee, D., Yannakakis, M.: Testing finite-state machines: state identification and
verification. Computers 43(3), 306–320 (1994)

9. Moore, E.F.: Gedanken-experiments on sequential machines. Automata Stud. 34,
129–153 (1956)

10. Smeenk, W., Moerman, J., Vaandrager, F., Jansen, D.N.: Applying automata
learning to embedded control software. In: Butler, M., et al. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 67–83. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-25423-4 5

11. Valmari, A., Lehtinen, P.: Efficient minimization of DFAs with partial transition
functions. In: STACS, pp. 645–656 (2008)

http://dx.doi.org/10.1007/978-3-319-25423-4_5
http://dx.doi.org/10.1007/978-3-319-25423-4_5

	Minimal Separating Sequences for All Pairs of States
	1 Introduction
	2 Preliminaries
	2.1 Partition Refinement
	2.2 Splitting Trees and Refinable Partitions

	3 Minimal Separating Sequences
	4 Optimizing the Algorithm
	5 Application in Conformance Testing
	6 Experimental Results
	7 Conclusion
	References

